Carlton Duffett
Neeraj Basu

EC450 Final Project
5/1/2015

Final Project Report
I. Project Goal

The goal of our project was to design and build a four-floor model elevator driven by a single

MSP430. Our goals included:

1. A 2-foot tall aluminum structure with 4 floors and a moving elevator car.

2. A motor, gearbox, and wire spool driven at variable speeds using pulse width modulation,

operating in both directions using an h-bridge system.

3. Bi-directional limit switches to accurately detect the position of the elevator car.
4. Additional circuitry to encode the switches, buttons, and to drive a 7-segment display.
5. A sophisticated control algorithm that dynamically adjusts elevator speed and optimizes

stops when ascending and descending.

The original sketches of our design:

umtT
Sm‘rousg
- Wiz o N
:
Alvminum ’Bﬂm](—
TAmE. N
" Ave TonAL,
g 4 ’/‘f (&} mlﬂl\{
'z]
|
CauL. ” é €S— TLEVATV,
BuTONS _/ caR.
E o IN- ELENATR
e1| < OANTROLS
eq
' an
6/a

I1. Design and Implementation

Structure:

This design started with a series of mechanical drawings for the structure:

—— |
-x . :
I T |
6%a" 1
}

T ‘4\» ~ o

'I%" S’/"' I '1 y

. n
S <—Syq'3—>
-yl &\L :L
5%°
v I l".)L I‘“?Iq ‘51

F" 4 Zt“ _.] SoE
viem>
=Sk To cenmerc,,

We used 17 aluminum extrusion for the main verticals, since the extrusion already has channels
cut into it that serve as a track for the elevator. The elevator car and divisions between floors are
made of 3/16” foam board, which is rigid and light. The divisions between floors were designed
as [-beams that form a pressure fit wit the channels in the vertical members. These clearly define
the four floors in the structure.

4 %"

F Loo&

3 “w
o-geoms 1t

Elevator Car:

The elevator was designed to fit in the rails tightly but with enough room to avoid friction
against the tower:

3" ‘j“ }é > ,/;
% SR
i
FLENATR. ’[
as q)/ v . ,5)/ 4
TP VIEW 4 4¥, t
L L) ¥
5%"
—5—
ELENATR CAK_ ‘l\
Sioe View L
454" T
l 3 l/" u

The top of the tower was redesigned to 7.25” deep to accommodate the electronics, MSP430,
battery, motor, and gearbox. The original square structure was simply too small to accommodate
all of our components.

Gearbox and Pulley:

After experimenting with motor speed and pulley dimensions, we settled on a 125:1 gear ratio
for our 3V motor and gearbox, made by Cebek. This gave us adequate speed at 30-40% duty
cycle and enough torque to overcome gravity and friction in the elevator system. We used 301b-
test monofilament line as our main elevator cable. The speed we selected is ultimately a tradeoff
between ascension/rate and response time. Higher speeds cause the elevator car to travel more
than an inch past the limit switch on each selected floor before the motor stops rotating. This is
mainly due to the inertia of the car, but can be mitigated by using a lower but still adequate
speed.

Motor and Controller:

Our motor is driven by one SN754410NE h-bridge motor driver. This is powered using 6V
directly from the battery. We use 40% duty cycle when ascending and 30% duty cycle when
descending. The extra power during ascension is needed to overcome gravity. As the battery
wears down, duty cycle must be increased to 50/40%, then 60/50% up/down to provide the same
desired speed. Currently we have no automatic mechanism to adjust this.

Priority Encoders:

Since we have 20 total I/O devices and only 16 available I/O pins on the MSP430, we used three
74LS 148N priority encoders to encode all of our inputs (on-structure buttons, in-elevator
buttons, and limit switches) into a series of enable signals (indicating that a button was pressed)
and addresses (indicating which button/switch was pressed). All encoders are powered by 3.3V
provided by the Launchpad. This is to ensure that any logic signals sent to the MSP430 do not
exceed Vce. Although this is at the bottom limit of their operating voltage, the encoders perform
well.

Seven-Segment Display:

To add a visual element and to indicate which floor the elevator is currently on, we used a large
common-anode seven-segment display, driven by a 74L.S47 BCD to 7-Segment decoder. This
displays the current floor the elevator is on, determined by the last limit switch depressed on the
tower (the last known location of the elevator car). We chose to drive the display and driver
using 6V for better brightness and contrast.

Limit Switches:

We use four SS-5GL2 bi-directional,

roller limit switches to detect the .‘ -
absolute position of the elevator car T
during travel. These provide feedback *
to the controller about elevator position, G — \ D
contacting the elevator on a metal cam J" b /
that protrudes from the back of the car. L ELEVARR,
Supplemental photos of this mechanism BUEEH < CAR.,
are provided below.
N T Smeec
4 Prorreosion|

(Tbm i

vascaL

RALL

On-Structure Call Buttons:

Six buttons attached to the tower allow the user to call the elevator car to each floor. These
buttons are used by passengers outside of the elevator who wish to enter it. The first and fourth
floors have only one button each (up and down respectively). The second and third floors have
two buttons each, allowing the user to select either an upward or downward destination.

| N ~CLEVATK [}
cALL cAL.
RUTONS “BUTONS
°

ENCoER

[+]
[e]
[¢]
[+]
B\/ T

In-Elevator Call Buttons:

Once the elevator is called to a floor, the passenger enters the elevator and selects his desired
destination (floors 1-4). This selection is restricted by the passenger’s direction of travel. If going
up, only floors above the current floor may be selected. If going down, only floors lower than the
current floor may be selected.

6V Battery and Power:

We use a 6V, AA battery pack to power our elevator. This directly powers the motor driver and
seven-segment display. The battery also indirectly powers the encoders and MSP430 through the
Launchpad’s onboard transformer, originally designed to convert 5V USB power into 3.3V for
the controller. When idle, the control system draws 60-100mA. When the motor is running, the
whole system draws 400mA. This depletes the 6V battery pack quicker than we would like.
Overall we are conservative with our power usage. We run the MSP430 with a IMHz clock and
8K WDT divisor. This wakes the CPU up every 8ms. This is relatively low power but still fast
enough for our needs.

Initialization:

When the system starts, the elevator position is unknown. The elevator is automatically lowered
to the first floor to verify its position before accepting user input.

II1. Circuit Schematic

J.Jts L.v
fomnyg ———
A2 T T

.JU>

o s S pens
g)
ﬁ / / YA -0 v -n) / / / / =L Yosaab | :5¢1
\ \\ / / / / Ay WOW AL
)
THIAONI B0 I (M3 HIaedN3
Jar 20194 Au2onig Faawalad, 1 |
A Y Shuyg -¢
N9
>
AEE =N
i (e roe2)
H - Avrasia
a I_.I. dBwbag ¢
g ———
F13¥N3 Imady/ | _ _
- T _||I
asw T | ol Q..A..sb ||I_
——F AT 3%
FAEE ST 2
) wod £

A9 =

IV. Assessment of Success

We feel that this project was entirely successful. Our elevator performs reliably and as expected.
Our hardware interfaces well with the MSP430 and all I/O devices. Our software is
comprehensive and safely guards against user and system errors. Overall we are thrilled with our
final product.

V. Next Steps

As our battery wears down, voltage in the system decreases. Fresh batteries start at around 6.3V
and decay to 5V over time. When voltage decays, our motor speed slows. Currently, we
manually adjust the duty cycle of the motor to maintain speed on weak batteries. In the future we
would like to detect battery voltage using the ADC and dynamically adjust duty cycle as the
voltage decays.

Currently our battery life is poor. A 6V set of AA batteries lasts only 6-8 hours under normal
operation. Reducing power consumption or using a larger, rechargeable battery (with more mAh
storage) could also improve battery life and longevity.

Our current control algorithm is basic. Only one passenger may call the elevator to a floor and
ride it to a destination at any time. Priority is granted on a first-come, first-serve basis. In the
future we would like to develop a better control algorithm that allows multiple passengers to call
the elevator simultaneously, prioritizing stops when ascending and descending.

When the car reaches its destination there is a small delay between when the limit switch is
depressed and the motor stops turning. This causes the car to travel past its stopping point by a
quarter inch in either direction. Dynamically reducing motor speed as the elevator nears its
destination could reduce this effect.

VI. Summary of Contributions

Carlton Duffett designed the system and made all mechanical drawings and circuit schematics.
Neeraj Basu implemented the h-bridge motor driver and fabricated the aluminum structure.
Both group members contributed equally to all other aspects of this project, including
construction, wiring, hardware implementation, software implementation, and debugging.

VII. Supplemental Photos

Our full control system, installed on the roof of the elevator:

ires to Limit Switches

3V Motor and 125:1 Gearbox ‘:_ P

e

MSP430 g2553

H-Bridge Motor Driver

e :

v 7-Segment D1splay Q\ \

v/

A

Wires to On-Structure Buttons ' Wires to In-Elevator Buttons ‘]

In-elevator call buttons, with Limit switch and cam on elevator car:
priority encoder:

3V motor, 125:1 gearbox, and pulley:

Full structure:

Elevator
Car

In-Elevator
Call Buttons

On-Structure
Call Buttons

10

VIII. Code

#include <msp430g2553.h>

/*
* Elevator Control System

Carlton Duffett
Neeraj Basu

*

EC450 Final Project
Boston University
Spring 2015

This program controls a 4-floor elevator system. The control hardware consists
of the following devices:

1x 3V motor and 125:1 gearbox

1x SN754410NE Dual H-Bridge Driver

1x 74LS247 BCD to Seven-Segment Decoder
3x 74LS148 Priority Encoder

1x MSP430g2553 Microcontroller

uih wnN -

The priority encoders encode all call buttons and limit switches on the structure.
These are appropriately prefixed:

TOWER_ On-tower call buttons that user presses to call the elevator car to each floor
ELEV_ In-elevator call buttons that user presses to select desired destination
LIMIT_ On-tower 1limit switches that detect the absolute position of the elevator car

This system has a very basic control algorithm. The elevator may be called to only one
floor and sent to only one destination at a time. Future versions will have a more
sophisticated control scheme.

Because of the way the priority encoders work, the P1 and P2 interrupts cannot be used
to detect button presses. Polling by the Watchdog Timer (WDT) is used instead.

The possible states of the system are:

'i' - initializing elevator (on reset the car defaults to the first floor)
'x' - idle, waiting to be called to a floor
‘At - going up to a called floor to receive a passenger

v - going down to a called floor to receive a passenger
w' - waiting at called floor for user to select destination
u - going up to selected destination with a passenger

d - going down to selected destination with a passenger

¥ X ¥ X X X X X X X X X ¥ ¥ X X X ¥ X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ * ¥ ¥

*/
// port 1 bit mask
#define SEVENSEG_A@ ox01 // seven segment display addresses
#tdefine SEVENSEG_A1 0x02
t#tdefine PWM oxe4 // pulse-width modulation for motor control
#tdefine SEVENSEG_A2 0x08
t#tdefine TOWER_EN ox10 // on-tower call buttons, enable
#tdefine TOWER_AO ox20 // on-tower call buttons, addresses
#tdefine TOWER_A1l 0x40
#tdefine TOWER_A2 0x80

11

// port 2 bit mask

#tdefine LIMIT_EN ox01 // 1limit switches, enable

t#tdefine LIMIT_AO ox02 // limit switches, addresses

#tdefine LIMIT_A1l 0x04

#tdefine ELEV_EN ox0e8 // in-elevator buttons, enable

t#tdefine ELEV_AQ ox10 // in-elevator buttons, addresses

t#tdefine ELEV_A1l 0x20

#tdefine UPCTL ox40 // up direction selection for motor control
#define DNCTL 0x80 // down direction selection for motor control

// state variables

volatile unsigned char state = 'i'; //
volatile unsigned char current_floor = 0; //
volatile unsigned char called_floor; //
volatile unsigned char destination; //
volatile unsigned char dest_direction; //
in

// initialization functions
void init_motor_control(void);
void init_limit_switches(void);
void init_elev_buttons(void);
void init_tower_buttons(void);
void init_timerA(void);

void init_7segment(void);

void init WDT(void);

// motor control functions
void stop_motor(void);
void go_up(void);

void go_down(void);

state of the system

current location of elevator car
floor elevator was called to

floor that user selects as destination

direction (up/down) that user's destination is

// duty cycle settings for up/down (out of 1000)

#define UP_DUTY_CYCLE
#define DN_DUTY_CYCLE

400 // 40 %
300 // 30 %

// control handlers

void update_display(unsigned char floor);
unsigned char get_tower_addr(void);
unsigned char get_elev_addr(void);
unsigned char get_limit_addr(void);

void handle_tower_button(unsigned char addr);
void handle_elev_button(unsigned char addr);
void handle_limit_switch(unsigned char addr);

/] ================ MAIN PROGRAM =============

int main(void) {

// 1Mhz calibration for SMCLK clock
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

// initialize the system
init_motor_control();
init_limit_switches();
init_elev_buttons();
init_tower_buttons();
init_7segment();
init_timerA();

init WDT();

12

// turn off CPU and enable interrupts
_bis_SR_register(GIE+LPM@_bits);

// initialize the motor control signals and PWM
void init_motor_control(void) {

// setup motor PWM port
P1DIR |= PWM;
P1SEL |= PWM;

// setup direction control

P2DIR |= UPCTL;

P2DIR |= DNCTL;

P2SEL &= ~UPCTL; // disconnect from XOUT
P2SEL &= ~DNCTL; // disconnect from XIN

// setup default PWM length (50%)
TAOCCR1 = 500; // on for 8/16 cycles
TAOGCCRO = 999; // off for 8/16 cycles

}

// initialize limit switches to monitor elevator position
void init_1limit_switches(void) {

// EN indicates that a switch was pressed

// AB - Al indicates which switch was pressed

P2DIR &= ~LIMIT_EN;

P2DIR &= ~LIMIT_AQ; // 4 limit switches = 2 bit address
P2DIR &= ~LIMIT_A1;

}

// initialize in-elevator call buttons for user to select desired floor
void init_elev_buttons(void) {

P2DIR &= ~ELEV_EN;
P2DIR &= ~ELEV_A@; // 4 call buttons = 2 bit address
P2DIR &= ~ELEV_A1;

}

// initialize on-tower call buttons for user to call elevator to a floor
void init_tower_buttons(void) {

P1DIR &= ~TOWER_EN;
P1DIR &= ~TOWER_A®@; // 6 tower buttons = 3 bit address
P1DIR &= ~TOWER_A1;
P1DIR &= ~TOWER_A2;

}

// initialize timer A to drive a PWM signal
void init_timerA(void) {

TAGCTL |= TACLR; // reset clock

TAGCTL |= (TASSEL_2 + // clock source = SMCLK
ID 0 + // clock divider =1
MC_1); // UP mode

TAOCCTL1 |= OUTMOD_7; // reset/set mode

13

}

// initialize the seven-segment display
void init_7segment(void) {

// 3-bit address to drive the correct display number
P1DIR |= SEVENSEG_A®;
P1DIR |= SEVENSEG_A1;
P1DIR |= SEVENSEG_A2;

}

// initialize the watchdog timer
void init WDT(void) {

// setup as an interval timer

WDTCTL = (WDTPW + // password
WDTTMSEL + // select interval timer mode
WDTCNTCL + // clear watchdog timer counter
0 + // SMCLK is the source
1); // source/8k

// enable the WDT interrupt (in the system interrupt register IE1)
IE1 |= WDTIE;

void stop_motor(void) {
// set motor to stop mode
P20UT |= UPCTL;
P20UT |= DNCTL;

¥
void go_up(void) {

// set motor control signal to UP
P20UT |= UPCTL;
P20UT &= ~DNCTL;

// use higher duty cycle in up direction
TAOCCR1 = UP_DUTY_CYCLE;

¥
void go_down(void) {

// set motor control signal to DN
P20UT &= ~UPCTL;
P20UT |= DNCTL;

// use lower duty cycle in down direction
TAOCCR1 = DN_DUTY_CYCLE;

|/ ================ 7-SEGMENT DISPLAY ================
void update_display(unsigned char floor) {

if (floor == 1) {
// ebeel
P10UT |= SEVENSEG_A®;
P10UT &= ~SEVENSEG_A1;
P10UT &= ~SEVENSEG_A2;

}

else if (floor == 2) {
// 0bole
P10UT &= ~SEVENSEG_A®;
P10UT |= SEVENSEG_A1;
P10UT &= ~SEVENSEG_A2;

}
else if (floor == 3) {
// ebe1ll
P10UT |= SEVENSEG_A@;
P10UT |= SEVENSEG_A1;
P10UT &= ~SEVENSEG_A2;
}
else if (floor == 4) {
// ©blee
P10UT &= ~SEVENSEG_A®;
P10UT &= ~SEVENSEG_A1;
P10UT |= SEVENSEG_A2;
}
¥
// ================ CONTROL HANDLERS ================

// address masks

#tdefine TOWER_ADDR_MASK OxE®@
#tdefine ELEV_ADDR_MASK ©0x30
#tdefine LIMIT_ADDR_MASK 0x06

// get the current address of the on-tower button that was pressed
unsigned char get_tower_addr(void) {

// right shift the address bits into LSB position
return ((P1IN & TOWER_ADDR_MASK) >> 5);

}

// get the current address of the in-elevator button that was pressed
unsigned char get_elev_addr(void) {

return ((P2IN & ELEV_ADDR_MASK) >> 4);
}

// get the current address of the limit switch that was pressed
unsigned char get_limit_addr(void) {

return ((P2IN & LIMIT_ADDR_MASK) >> 1);
}

// on-tower call button addresses

#tdefine F1_UP ©x7 // floor 1, up button
#tdefine F2. DN ©@x6 // floor 2, down button
#tdefine F2_UP ox5 // .. etc

#tdefine F3_DN x4

t#tdefine F3_UP ox3

t#tdefine F4_DN ox2

// handles a call event requesting the elevator to a specific floor
// to be called, the elevator must currently be idle
void handle_tower_button(unsigned char addr) {

switch (addr) {

15

// First floor, up button
case F1_UP:

if (state == 'x') { // elevator is currently idle

called_floor = 1;
= u ;

dest_direction

// get current position of elevator and signal movement
if (current_floor != 1) {

go_down();

state = 'v'; // going down to called floor

}
else {
state = 'w'; // waiting for floor selection
}
¥
break;

// second floor, down button
case F2_DN:

if (state == 'x') { // elevator is currently idle

called_floor = 2;
dest_direction =

d'; // elevator's destination is down
if (current_floor != 2) {

if (current_floor > 2) {

go_down();
state = 'v';
}
else {
go_up();
state = '*';
}
}
else {
state = 'w';
}
¥
break;

// second floor, up button
case F2_UP:

if (state == 'x') { // elevator is currently idle

called_floor = 2;
dest_direction = 'u'; // elevator's destination is up
if (current_floor != 2) {

if (current_floor > 2) {

go_down();
state = 'v';
}
else {
go_up();

16

state = '"*';

}
}
else {
state = 'w';
}
¥
break;

// third floor, down button
case F3_DN:

if (state == 'x') { // elevator is currently idle

called_floor = 3;
dest_direction = 'd';
if (current_floor != 3) {

if (current_floor > 3) {

go_down();
state = 'v';
}
else {
go_up();
state = '"*';
}
}
else {
state = 'w';
}
¥
break;

// third floor, up button
case F3_UP:

if (state == 'x') { // elevator is currently idle

called_floor = 3;
dest_direction =

s
if (current_floor != 3) {

if (current_floor > 3) {

go_down();
state = 'v';
}
else {
go_up();
state = '"*';
}
}
else {
state = 'w';
}
}
break;

// fourth floor, down button
case F4_DN:

17

if (state == 'x') { // elevator is currently idle

called_floor = 4;

dest_direction 'd';

if (current_floor != 4) {

go_up();
state = '*';
}
else {
state = 'w';
}
¥
break;
} // switch

}

// in-elevator call button addresses
// currently unused

t#tdefine F1_SELECTED 0x00

t#tdefine F2_SELECTED 0x10

t#tdefine F3_SELECTED 0x20

t#tdefine F4_SELECTED 0x30

// handles a call event where the elevator passenger selected a destination floor
void handle_elev_button(unsigned char addr) {

destination = addr + 1; // valid destinations are 1 - 4

if (state == 'w') { // waiting for user to select destination
if (destination == current_floor) {
state = 'w'; // already at destination
}
else if (dest_direction == 'u' && (destination > current_floor)) {
state = 'u'; // going up with passenger
else if (dest_direction == 'd' && (destination < current_floor)) {
state = 'd'; // going down with passenger
}
}

}

// 1limit switch addresses
// currently unused
#define LIMIT_1 0x00
#define LIMIT_2 0x01
#define LIMIT_3 0x02
#define LIMIT_4 0x03

// handles the event where a limit switch on the tower is depressed, indicating elevator
position

void handle_limit_switch(unsigned char addr) {

current_floor = addr + 1; // valid floors are 1 - 4

if (current_floor == 1 || current_floor == 4) {

18

stop_motor(); // redundant, ensure elevator does not travel past structural limits

}
update_display(current_floor);

interrupt void WDT_interval _handler() {

// poll the sensors to check for user input
if (P2IN & LIMIT_EN) {

// 1limit switch depressed
handle_limit_switch(get_limit_addr());
}
if (P2IN & ELEV_EN) {

// in-elevator button pressed
handle_elev_button(get_elev_addr());

}
if (P1IN & TOWER_EN) {

// on-tower button pressed
handle_tower_button(get_tower_addr());

}

// handle system state
switch (state) {

case 'i': // initialize elevator position, runs only at power-on
if (current_floor == 1) {

// elevator initialized to first floor, ready for service
stop_motor();
state = 'x';

}

else {

// initially send elevator to first floor
go_down();
}

break;

case 'x': // elevator idle
// do nothing for now
stop_motor();
break;

case '~': // *up arrow* going up to called floor

if (called_floor == current_floor) {
stop_motor();

state = 'w';
¥
else {

go_up();
¥

break;

case 'v': // *down arrow* going down to called floor

if (called_floor == current_floor) {
stop_motor();

state = 'w';
¥
else {
go_down();
¥
break;
case 'w':

// waiting for user input
stop_motor();
break;

case 'u': // going up with passenger

if (destination == current_floor) {
stop_motor();
state = 'x';

¥

else {
go_up();

¥

break;

case 'd': // going down with passenger

if (destination == current_floor) {
stop_motor();
state = 'x';

¥

else {
go_down();

¥

break;

} // switch

}
ISR_VECTOR(WDT_interval_handler, ".int1@")

