top of page
B.U. Solid State Laboratory, May 2013 - July 2014
B.U. Solid State Laboratory, May 2013 - July 2014
B.U. Solid State Laboratory, May 2013 - July 2014
Neural Networks for Recognition
CMU16-720, Computer Vision
November 2020
Abstract:
For this project, my objective was to implement a fully connected neural network from scratch. This included writing the forward/backward propagation, loss function, weight updates and batching. My objective was to identify handwritten letters given a set of sample data - the "Hello World" of neural nets.
Process:
The back propagation algorithm was engineered using the gradient descent approach. Given the original weights of each neuron and the appropriate intermediate results, this function would return the gradient with respect to its loss. From here the network was trained with a single hidden layer consisting of 64 neurons to get the best weights possible. The confusion matrix to the left demonstrates the most common mix-ups during training
Result:
After segmenting the letters from the sample images, each image was compressed in size and passed as input the to neural net. An example of the neural net's best output can be found below.
Original Image
​
NN's Best Guess
Segmented Letters
As you can see the NN is subject to many of the mistakes captured in the confusion matrix. Although it did a decent job recreating the sentences given the original images.
Some other neat results:After segmenting the letters from the sample images, each image was compressed in size and passed as input the to neural net. An example of the neural net's best output can be found below.
Visualization of Neuron's Weights Upon Initialization
Visualization of Neuron's Weights After Training
Example of input image vs. NN's recreation of the letter V and O
bottom of page